Gaussian Likelihood Models¶
misfit
¶
Misfit/Likelihood for usage in Hippylib.
This module implements the likelihood for Bayesian inverse problems in the Hippylib framework. In the optimization context, it can be interpreted as a misfit functional. We focus on additive, zero-centered Gaussian noise models. Given a PDE solution operator \(\mathcal{G}(\mathbf{m}) = \mathbf{u}\), we define for each output component \(u\) the projection to points of observation \(u_d = \mathcal{B}u \in \mathbb{R}^q\) with observation operator \(\mathcal{B}: \mathcal{U} \to \mathbb{R}^q\). We then write for the component data \(d\) that
Therefore, we can define the likelihood density for a single variable component u as
The below methods implement discrete versions of the projection operator, which we refer to as
\(\mathbf{B}\), and a diagonal noise precision matrix \(\Gamma^{-1}\) with pointwise varying
coefficients. The misfit functional is then given as the negative log-likelihood. We further
compute gradients and Hessian-vector products of the misfit w.r.t. \(u\). The misfit functional
for a single component is implemented in the DiscreteMisfit
class. Multiple misfit objects can
be combined in the VectorMisfit
wrapper.
Classes:
Name | Description |
---|---|
MisfitSettings |
Dataclass to store settings for misfit construction. |
DiscreteMisfit |
Misfit class for scalar misfit problems. |
VectorMisfit |
Misfit class for vector-valued misfit problems. |
TDMisfit |
Misfit class for time-dependent misfit problems (not implemented yet). |
Misfit |
Dataclass to store assembled misfit objects. |
MisfitBuilder |
Builder class to assemble misfit objects from settings. |
Functions:
Name | Description |
---|---|
assemble_pointwise_observation_operator |
Assemble pointwise observation operator. |
assemble_noise_precision_matrix |
Assemble noise precision matrix. |
spin.hippylib.misfit.DiscreteMisfit
¶
Bases: hl.Misfit
Implementation of a single-component misfit functional, as described above.
Methods:
Name | Description |
---|---|
cost |
Evaluate the cost of the misfit functional. |
grad |
Compute the gradient of the misfit functional. |
setLinearizationPoint |
Set point for Hessian evaluation. |
apply_ij |
Apply Hessian-vector product. |
observation_matrix
property
¶
Return internally stored observation matrix.
__init__
¶
__init__(data: npt.NDArray[np.floating], observation_matrix: dl.Matrix, noise_precision_matrix: dl.PETScMatrix) -> None
Constructor, initializes internal data structures and buffers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
npt.NDArray[np.floating]
|
Observed data. |
required |
observation_matrix
|
dl.Matrix
|
Projection matrix from function to observation space. |
required |
noise_precision_matrix
|
dl.PETScMatrix
|
Precision of the noise model. |
required |
cost
¶
cost(state_list: Iterable[dl.Vector | dl.PETScVector, dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None]) -> Real
Evaluate the cost of the misfit functional.
For a given state \(u\), data \(d\), projection matrix \(\mathbf{B}\) and noise precision \(\Gamma^{-1}\), the cost is given as
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_list
|
Iterable
|
List of forward, parameter and adjoint variables \((u,m,p)\), only \(u\) is required. |
required |
Returns:
Name | Type | Description |
---|---|---|
Real |
Real
|
Cost value for given state. |
grad
¶
grad(derivative_type: Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]], state_list: Iterable[dl.Vector | dl.PETScVector, dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None], output_vector: dl.Vector | dl.PETScVector) -> None
Gradient of the cost functional given in the cost
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
derivative_type
|
Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]]
|
Variable
with respect to which the gradient is computed. Only |
required |
state_list
|
Iterable
|
List of forward, parameter and adjoint variables \((u,m,p)\), only \(u\) is required. |
required |
output_vector
|
dl.Vector | dl.PETScVector
|
Computed gradient. |
required |
setLinearizationPoint
¶
setLinearizationPoint(_state_list: Iterable[dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None], _gauss_newton_approx: bool) -> None
Set point for Hessian evaluation.
This method does nothing, as the misfit is a quadratic form and its second variation is thus constant. Only required for interface compatibility.
apply_ij
¶
apply_ij(first_derivative_type: Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]], second_derivative_type: Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]], hvp_direction: dl.Vector | dl.PETScVector, output_vector: dl.Vector | dl.PETScVector) -> None
Apply Hessian vector-product.
Second derivatives are only computed with respect to the forward variable \(u\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
first_derivative_type
|
Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]]
|
Variable to compute first derivative with respect to. Only |
required |
second_derivative_type
|
Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]]
|
Variable to compute second derivative with respect to. Only |
required |
hvp_direction
|
dl.Vector | dl.PETScVector
|
Direction vector for which to compute Hessian-vector product. |
required |
output_vector
|
dl.Vector | dl.PETScVector
|
Resulting vector. |
required |
spin.hippylib.misfit.VectorMisfit
¶
Bases: hl.Misfit
Misfit object for vector-valued functions.
The vector misfit is basically a wrapper to a collection of single-component misfiit objects,
i.e. the DiscreteMisfit
class. For vector-valued quantities, it distributes computations for
cost, gradient, and Hessian-vector product to the individual components, and recombines the
results accordingly. This makes the vector misfit completely independent of the underlying
implementation for individual components.
Info
The only underlying assumption at the moment is that the different components are quadratic forms of the forward variable \(u\).
Methods:
Name | Description |
---|---|
cost |
Evaluate the cost of the misfit functional. |
grad |
Compute the gradient of the misfit functional. |
setLinearizationPoint |
Set point for Hessian evaluation. |
apply_ij |
Apply Hessian-vector product. |
__init__
¶
Constructor, initialize list of misfits and buffers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
misfit_list
|
Iterable[hl.Misfit]
|
List of misfit objects for each component. |
required |
function_space
|
dl.FunctionSpace
|
Vector function space of all components. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
Checks that number of misfits matches number of components in function space. |
cost
¶
cost(state_list: Iterable[dl.Vector | dl.PETScVector, dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None]) -> float
Evaluate the cost of the misfit functional.
The vector misfit wrapper computes the cost for each component individually and sums up the contributions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_list
|
Iterable
|
List of forward, parameter and adjoint variables \((u,m,p)\), only \(u\) is required. |
required |
Returns:
Name | Type | Description |
---|---|---|
Real |
float
|
Cost value for given state. |
grad
¶
grad(derivative_type: Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]], state_list: Iterable[dl.Vector | dl.PETScVector, dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None], output_vector: dl.Vector | dl.PETScVector) -> None
Gradient of the cost functional given in the cost
method.
The wrapper computes individual gradient components \(g_i\) and assembles them into a vector \(\mathbf{g} = \text{vec}(g_i)\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
derivative_type
|
Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]]
|
Variable
with respect to which the gradient is computed. Only |
required |
state_list
|
Iterable
|
List of forward, parameter and adjoint variables \((u,m,p)\), only \(u\) is required. |
required |
output_vector
|
dl.Vector | dl.PETScVector
|
Computed gradient. |
required |
setLinearizationPoint
¶
setLinearizationPoint(_state_list: Iterable[dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None, dl.Vector | dl.PETScVector | None], _gauss_newton_approx: bool) -> None
Set point for Hessian evaluation.
This method does nothing, as the misfit is a quadratic form and its second variation is thus constant. Only required for interface compatibility.
apply_ij
¶
apply_ij(first_derivative_type: Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]], second_derivative_type: Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]], hvp_direction: dl.Vector | dl.PETScVector, output_vector: dl.Vector | dl.PETScVector) -> None
Apply Hessian vector-product.
Second derivatives are only computed with respect to the forward variable \(u\). The vector wrapper distributes the Hessian-vector product computation to the individual components and recombines the results into a single vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
first_derivative_type
|
Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]]
|
Variable to compute first derivative with respect to. Only |
required |
second_derivative_type
|
Annotated[int, IsEqual[hl.STATE] | IsEqual[hl.PARAMETER]]
|
Variable to compute second derivative with respect to. Only |
required |
hvp_direction
|
dl.Vector | dl.PETScVector
|
Direction vector for which to compute Hessian-vector product. |
required |
output_vector
|
dl.Vector | dl.PETScVector
|
Resulting vector. |
required |
_create_buffers
staticmethod
¶
_create_buffers(function_space: dl.FunctionSpace) -> tuple[Iterable[dl.Vector], Iterable[dl.Vector]]
Create buffers for in-memory computations.
spin.hippylib.misfit.TDMisfit
¶
Bases: hl.Misfit
Time-dependent misfit.
Warning
This class is not implemented yet.
__init__
¶
Constructor (raises error).
spin.hippylib.misfit.MisfitSettings
dataclass
¶
Configuration and data for a misfit object.
Depending on the function space, the observation points, values, and noise variance given, the
MisfitBuilder
will assemble either a
DiscreteMisfit
or a
VectorMisfit
object.
Warning
Settings for time-dependent problems are only stubs, time-dependent misfits are not implemented yet.
Attributes:
Name | Type | Description |
---|---|---|
function_space |
dl.FunctionSpace
|
Function space of the forward variable. Can be scalar or vector-valued. |
observation_points |
npt.NDArray[np.floating] | Iterable[npt.NDArray[np.floating]]
|
Points of observation to project to. Either single array or collection of arrays for multiple components. |
observation_values |
npt.NDArray | Iterable[npt.NDArray] | Iterable[Iterable[npt.NDArray]]
|
Observed data. Either single array or collection of arrays for multiple components. |
noise_variance |
npt.NDArray[np.floating] | Iterable[npt.NDArray[np.floating]]
|
Diagonal elements of the noise precision matrix. Either single array or collection of arrays for multiple components. |
stationary |
bool
|
Whether the misfit is time-dependent. |
observation_times |
npt.NDArray[np.floating] | None
|
Observation times for time-dependent misfit. |
Raises:
Type | Description |
---|---|
ValueError
|
Checks that only single arrays are provided for scalar function spaces. |
ValueError
|
Checks that the correct number of arrays is provided for vector function spaces. |
ValueError
|
Checks that observations times are provided for time-dependent misfits. |
spin.hippylib.misfit.Misfit
dataclass
¶
Misfit object returned by the builder.
Wraps the corresponding Hippylib object and scipy representations of the noise precision and observation matrices.
spin.hippylib.misfit.MisfitBuilder
¶
Builder for misfit objects.
The builder takes a MisfitSettings
object and builds a
misfit object according to the provided configuration. The builder distinguishes between
single-component and vector-valued function spaces, as well as stationary and time-dependent
misfits (time-dependent misfit are not yet implemented though!).
Methods:
Name | Description |
---|---|
build |
Main interface to build a misfit object. |
__init__
¶
Constructor, set data structures from settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
MisfitSettings
|
Configuration object for the builder |
required |
build
¶
_assemble_observation_matrices
¶
Assemble observation matrices.
For a single component, this is just one matrix, for multiple components, it is a list of
matrices. Simply calls the
assemble_pointwise_observation_operator
function.
Returns:
Type | Description |
---|---|
dl.Matrix | list[dl.Matrix]
|
dl.Matrix | list[dl.Matrix]: Discretizes observation operator(s). |
_assemble_noise_precision_matrices
¶
Assemble noise precision matrices.
For a single component, this is just one matrix, for multiple components, it is a list of
matrices. Simply calls the
assemble_noise_precision_matrix
function.
Returns:
Type | Description |
---|---|
dl.PETScMatrix | list[dl.PETScMatrix]
|
dl.PETScMatrix | list[dl.PETScMatrix]: Noise precision matrix/matrices. |
_build_misfit
¶
Builds the misfit from the assembled noise precision and observation matrices.
The method distinguishes four different cases:
- Single component, stationary: Assemble a single
DiscreteMisfit
object. - Single component, time-dependent (not implemented): Assemble a single
DiscreteMisfit
object. Use it as per-time-step misfit in a time-dependent misfit object. - Multiple components, stationary: Assemble a list of
DiscreteMisfit
objects and wrap them in aVectorMisfit
object. - Multiple components, time-dependent (not implemented): Assemble a list of
DiscreteMisfit
objects and wrap them in aVectorMisfit
object. Use it as per-time-step misfit in a time-dependent misfit object.
Returns:
Name | Type | Description |
---|---|---|
Misfit |
Misfit
|
SPIN misfit object wrapper |
_convert_matrices_to_scipy
¶
_convert_matrices_to_scipy(matrices: dl.Matrix | dl.PETScMatrix | Iterable[dl.Matrix | dl.PETScMatrix]) -> sp.sparse.coo_array | Iterable[sp.sparse.coo_array]
Convert sparse dolfin matrices to scipy COO arrays.
Uses the convert_matrix_to_scipy
function in the Fenics converter module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrices
|
dl.Matrix | dl.PETScMatrix | Iterable[dl.Matrix | dl.PETScMatrix]
|
Dolfin matrices to convert |
required |
Returns:
Type | Description |
---|---|
sp.sparse.coo_array | Iterable[sp.sparse.coo_array]
|
sp.sparse.coo_array | Iterable[sp.sparse.coo_array]: Resulting Scipy matrices |
spin.hippylib.misfit.assemble_pointwise_observation_operator
¶
assemble_pointwise_observation_operator(function_space: dl.FunctionSpace, observation_points: npt.NDArray[np.floating]) -> dl.Matrix
Assemble pointwise observation matrix.
This is a simple PEP8-conformant wrapper to Hippylibs assemblePointwiseObservation
function.
The function takes an input function space and points of observation, to which a function
shall be projected. Supports multidimensional domains. In a \(d\)-dimensional domain with \(q_d\)
observation points per dimension, the observation_points
array should have shape
\(q_d\times d\). The resulting projection matrix \(\mathbf{B}\) has shape \(q_d d \times N\),
where \(N\) is the number of degrees of freedom in the function space.
Warning
The observation operator works only component-wise, on scalar function spaces.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
function_space
|
dl.FunctionSpace
|
Function space of vector to project. |
required |
observation_points
|
npt.NDArray[np.floating]
|
Points of observation to project to. |
required |
Returns:
Type | Description |
---|---|
dl.Matrix
|
dl.Matrix: Projection operator/matrix. |
spin.hippylib.misfit.assemble_noise_precision_matrix
¶
Assemble the precision matrix for a Gaussian noise model.
This function only supports diagonal precision matrices, but allows for pointwise varying
values. For \(q\) overall observation points, the noise_variance
array should have shape \(q\),
and the resulting precision matrix \(\Gamma^{-1}\) will have shape \(q \times q\).
Warning
The precision matrix works only component-wise, on scalar function spaces.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
noise_variance
|
npt.NDArray[np.floating]
|
Diagonal elements of the precision matrix. |
required |
Returns:
Type | Description |
---|---|
dl.PETScMatrix
|
dl.PETScMatrix: Sparse precision matrix in dolfin format. |